
Streamlining Operational Efficiency

Co-Robot 

Automation Platform:



01

Introduction
CoRobots – A Cloud Native Workflow Automation 

Platform provided by Coredge.io is designed to 

enable collaborative development, managing 

dependencies and executing workflows while 

operating at scale, making it well suited for 

automations requiring complex workflows with 

multiple tasks.



02

Key Features
Following Key features makes CoRobots a powerful and flexible 

platform:

Like all other Coredge provided 
platforms is inherently multi-
tenant in nature providing 
separate workspaces for 
different teams, to develop and 
share their work

Multi Tenancy

CoRobots provides options to 
integrate with existing 
Organization user repository 
supporting various 
mechanisms like OIDC, SAML, 
LDAP etc.

IAM/SSO



Workflows can be dynamically 
created and modified, allowing 
conditional task execution, 
loops, and task 
parameterization at runtime, 
enabling flexible workflow 
designs that can adapt to 
different inputs or conditions.

Dynamic Workflow 

Creation

Each step in the workflow runs 
inside a container, allowing 
developers to leverage any 
containerized tool, language, or 
library without needing 
specialized configuration, 
making it highly flexible for 
various use cases, from simple 
tasks to complex machine 
learning or data processing 
pipelines.

Container Based 
Execution

It is a Kubernetes native 
platform and can be hosted on 
any standard Kubernetes 
distribution, where it also 
leverages the underneath 
Kubernetes System to perform 
execution of the jobs triggered 
by various workflows. It is 
recommended to use Coredge 
Kubernetes Platform (CKP) to 
achieve better fine-tuned 
scalability of the platform

Kubernetes – Native

Schedule and Event-
Driven Workflows
CoRobots Workflows can be 
triggered by external events 
such as Git commits, webhook 
events, or time-based 
schedules, making it suitable 
for CI/CD pipelines and 
automation.

03



04

CoRobots allows different 
teams to develop individual 
tasks / jobs to workflow 
templates independently as 
part of different projects and 
then allow sharing it as part of 
common catalog with specific 
approvals.

Catalog
CoRobots while working with 
container-based execution still 
allow users to work with in 
browser editors or git repo 
references to internally build 
the relevant container images, 
these images are locally stored 
and managed. 

While new versions of the 
workflow templates and jobs 
are contributed it also 
maintains the version history, 
providing options to fallback to 
older versions for any specific 
requirements

Workflow Templates 
and Reusability

Artifact Management

Version Management

Users can define workflow 
templates for repeated use, 
promoting reusability and 
consistency across similar 
workflows, reducing 
redundancy and simplifies 
workflow creation for common 
processes.



05

CoRobots supports highly 
parallel workflows, allowing 
large-scale execution of tasks 
across the Kubernetes cluster. It 
scales seamlessly by 
leveraging Kubernetes inherent 
ability to manage container 
workloads and resource 
allocation.

Parallelism and 
Scalability

Workflows are structured as 
Directed Acyclic Graphs 
(DAGs), enabling users to 
define task dependencies 
explicitly, while ensuring that 
tasks are executed in the 
correct order based on their 
dependencies, while allowing 
multiple tasks to run in parallel, 
ensuring efficiency.

DAG (Directed Acyclic 
Graph) Support



06

Use Case No.01

Automated Device Monitoring 
and Maintenance in Data Centers
Problem: Monitoring and maintaining data centre infrastructure 
involves managing hundreds or thousands of devices, such as 
servers, switches, storage systems, and firewalls. Manually 
monitoring device health, performing updates, and addressing 
faults is time-consuming.

Use Case:

Event: When a device sends an alert (e.g., high CPU usage, memory failure, or 
hardware health issue) or regular health check data is received.

Workflow: 

The platform ingests the event (device health alert).

A pre-built workflow template analyses the event to identify the type and 
severity of the issue.

Modular workflow images trigger automatic remediation actions like 
restarting the device, applying patches, or reallocating workloads.

If the issue is critical, escalate it by creating a service ticket and notifying 
relevant engineers.

Outcome: Automated device monitoring and maintenance ensure 
continuous operations and reduce downtime without manual 

intervention.



07

Use Case No.02

Use Case:

Event: High CPU/GPU usage, memory consumption, or storage capacity 
thresholds reached during access of application or inferencing of AI models.

Automated Resource Scaling for 
Critical Workloads in Cloud
Problem: Large scale end-user facing  workloads are often 
resource-intensive and require dynamic scaling of compute, 
memory, and storage resources in cloud to meet varying 
demands.

Workflow: 

The event (resource consumption threshold) triggers an automatic resource 
scaling workflow.

Once the workload is reduced, the workflow scales down resources to 
optimize costs.

The system continuously monitors usage metrics and sends notifications to 
administrators in case of resource bottlenecks.

Workflow images are triggered to allocate additional compute resources 
(e.g., scaling virtual machines or containers in the cloud) based on demand.

Remove the scaled down resources back to a Load Balancer of service 
discovery framework.

Add the scaled up resources back to a Load Balancer of service discovery 
framework.

Outcome: Automated resource scaling ensures optimal use of cloud  infrastructure, 
preventing performance bottlenecks during AI/ML training or inference workloads as 

well as large user facing applications.



Use Case No.03

Data Preprocessing Automation 
for AI/ML Pipelines
Problem: AI/ML workflows often require large-scale data preprocessing before 
feeding it into machine learning models. Automating the extraction, 
transformation, and loading (ETL) of data reduces time and effort in AI/ML data 
preparation.

Use Case:

Event: When raw data is ingested from various sources (e.g., databases, APIs, 
IoT sensors).

08

Outcome: Automated data preprocessing reduces manual effort 
and speeds up the preparation of clean, usable data for AI/ML 

pipelines, improving the efficiency of data science teams.

Workflow: 

An event triggers the ETL workflow for data preprocessing.

The platform’s modular workflow images extract data, clean it (removing null 
values or errors), normalize it, and format it as required by the AI/ML pipeline.

Workflow images can also apply feature engineering, such as encoding 
categorical variables or scaling numerical data, before passing it to the ML 
model.

Once preprocessing is completed, the data is automatically pushed to the AI/
ML pipeline for training or inference.



09

Use Case:

Event: When a new dataset is ingested or a machine learning job is completed.

Workflow: 

An event triggers the ETL workflow for data preprocessing.

The platform triggers a workflow based on the event (dataset ingestion or job 
completion).

A pre-built backup workflow template initializes an automated data backup 
process, storing the dataset on distributed storage systems.

Workflow images manage compression, encryption, and verification of 
backups, ensuring data security.

In the event of a failure or loss of data, the system triggers an automated 
data recovery workflow.

Outcome: Seamless backup and recovery of AI/ML datasets and 
models, ensuring high data availability and security in production 

environments.

Use Case No.04

Automated Data Backup 
and Recovery for AI/ML 
Pipelines
Problem: AI/ML data pipelines generate large amounts 
of data that need to be stored and backed up regularly. 
Ensuring data backups are automated and retrievable 
quickly is critical for uninterrupted data processing.



10

Use Case No.05

AI/ML Model Deployment and 
Monitoring
Problem: Deploying and monitoring machine learning models in production 
environments requires continuous tracking of model performance, accuracy, 
and operational health to ensure they function optimally.

Use Case:

Event: When new data is ingested or a machine learning model’s performance 
metrics fall below a predefined threshold.

Workflow: 

The platform ingests the event (new data or performance degradation).

A workflow triggers model re-evaluation and retraining using modular 
workflow images that integrate with data science tools (e.g., TensorFlow, 
PyTorch).

The workflow deploys the updated model to production after validation and 
automatically updates monitoring dashboards.

If the model fails to improve, the system alerts data scientists or suggests 
alternative model parameters.

Outcome: Continuous and automated monitoring and retraining 
of AI/ML models maintain high model accuracy and reduce 

manual efforts in managing model lifecycles.



11

Workflow: 

Trigger Event:

Validation and Approval:

Template Selection:

Provisioning Workflow: 

The platform ingests the provisioning request (e.g., request for an Oracle 19c 
database instance).

The workflow image executes scripts to automatically deploy the Oracle 
database instance. Parameters such as database version, size, location 
(region or az), and performance settings (CPU, memory) are configured 
automatically.

Validate the user's credentials and check available BareMetal resources 
(e.g., storage, compute) in the cloud or data centre. If necessary, route the 
request to an approver using an approval workflow.

A pre-built workflow template for Oracle database provisioning is selected 
based on the request parameters (version, size, environment).

Use Case:

Event: A user or system submits a request for a new Oracle database instance 
through a service portal or API.

Use Case No.06

Oracle Database Provisioning 
Automation

Problem: Automatically provision Oracle databases in a self-service manner 
for  internal teams or external customers.



Notification and Access:

Configuration and Security:

Once provisioning is complete, notify the user with database connection 
details. Update the centralized system with the newly provisioned instance 
details for future management.

Post-Provisioning Actions:

Apply security configurations (encryption, user roles, and access control) 
using modular workflow images. Configure Oracle Data Guard or Oracle RAC 
for high availability, if required.

Trigger automated backups and monitoring to ensure continuous operation.

Outcome: Oracle databases are provisioned automatically with 
minimal manual intervention, reducing the time from request to 

delivery and ensuring consistency in deployments.

12



Use Case No.07

Automated Oracle Database Scaling
Problem: Automatically scale Oracle databases up or down based on 
performance metrics to ensure optimal resource utilization.

Workflow: 

Trigger Event:

Resource Evaluation:

Scaling Workflow:

Verification and Notification:

The system ingests real-time performance metrics (e.g., CPU usage 
exceeding 80%) and triggers the scaling workflow.

A modular workflow image analyses the current resource utilization and 
determines if scaling is required (e.g., increase CPU, memory, or storage 
capacity).

Automatically increase or decrease Oracle database instance resources 
using the appropriate cloud APIs or BareMetal orchestration tools. For cloud 
environments, the system may increase the virtual machine size or allocate 
more resources for databases.

Use Case:

Event: Performance monitoring detects high CPU, memory usage, or storage 
limits on an Oracle database instance.

Validate the scaling operation and monitor the new performance metrics to 
ensure the problem is resolved. Notify the admin or user about the resource 
changes and log the scaling activity.

13

Outcome: The system automatically adjusts the resources 
allocated to Oracle databases, ensuring that performance meets 

demand without manual oversight.



14

Workflow: 

Backup Scheduling Trigger:

Pre-Backup Check:

Backup Execution:

Verification and Notification:

Restore Workflow (On Demand):

The platform ingests a scheduled event (e.g., daily, weekly backup). A 
modular workflow template for Oracle database backup is selected.

Workflow checks database health and ensures all transactions are 
committed before starting the backup. It triggers Oracle Recovery Manager 
(RMAN) or cloud-native backup tools based on the environment.

The workflow template initiates the backup process, ensuring compression 
and encryption of data as per policy. Backup is stored in the desired 
location (on-premises storage or cloud).

The workflow verifies the integrity of the backup. It logs the event, updates 
the backup repository, and sends a notification to administrators.

In case of a restore request, the platform triggers the restore workflow. The 
modular restore workflow retrieves the latest backup from storage and 
performs the restoration process while maintaining data consistency. 
Notifications are sent upon successful restoration.

Outcome: Automated and consistent backups of Oracle 
databases, with the ability to restore them quickly, ensuring 

minimal downtime in case of failures.

Use Case No.08

Use Case:

Event: Scheduled time for backup execution or a user request for backup or 
restore.

Oracle Database Backup and Restore 
Automation

Problem: Automate Oracle database backup schedules and provide self-
service restore options in case of failures or data corruption.



Use Case No.09

Automated Provisioning of Load 
Balancer Instances
Problem: Enable self-service provisioning of load balancer instances based on 
user requests or application deployment needs.

Use Case:

Event: A user or an automated system requests the creation of a new load 
balancer instance (e.g., when deploying a new application).

Workflow: 

Template Selection: 

Request Trigger:

The system selects a pre-built workflow template for load balancer 
provisioning, tailored to the user's needs (e.g., Layer 4 or Layer 7 load 
balancer, HTTP/HTTPS support).

The platform ingests a request (e.g., API or service portal request) to 
provision a new load balancer.

Configuration and Resource Allocation:

15

Health Checks and Security Settings:

Provisioning and Notification:

Post-Provisioning Monitoring:

The workflow configures the load balancer instance by defining parameters 
like target server groups, health check protocols, and traffic routing rules. 
Automatically allocate resources (IP addresses, bandwidth) to the load 
balancer based on the environment (on-premises or cloud).

Configure health checks for backend servers and set up SSL termination or 
traffic encryption if needed. Apply firewall rules, DDoS protection, and 
access control lists (ACLs) to secure the load balancer.

Deploy the load balancer instance and verify successful provisioning. Notify 
the user or system with the load balancer configuration details (e.g., IP 
addresses, DNS names).

Automatically set up monitoring to track load balancer performance (e.g., 
traffic levels, response times, error rates).

Outcome: Self-service load balancer provisioning that ensures 
users can quickly spin up new instances without manual 
intervention, reducing time-to-market for applications.



Use Case No.10

Dynamic Traffic Scaling Based on 
Network Load
Problem: Automatically scale the load balancer instance based on real-time 
network traffic and application demand to ensure optimal performance and 
cost-efficiency.

Use Case:

Event: An increase in network traffic or backend server load is detected 
through performance monitoring.

Workflow: 

Trigger Event:

Performance metrics from the load balancer (e.g., high request rates, CPU/
memory thresholds) trigger a scaling workflow.

16

Traffic and Load Analysis:

A modular workflow image analyses current traffic patterns, backend server 
performance, and application behaviour to determine scaling needs (e.g., 
increase/decrease the number of backend servers or load balancer 
instances).

Notifications:

Continuously monitor traffic and backend performance to dynamically 
scale down resources when demand decreases, optimizing cost.

Send notifications to administrators with details of the scaling operation 
and update monitoring dashboards.

Automatically scale up the load balancer capacity by provisioning 
additional backend servers or load balancer instances in response to the 
traffic surge. Reconfigure the load balancer to distribute traffic across the 
new instances.

Performance Monitoring and Feedback Loop:

Outcome: Automated, real-time scaling of load balancer capacity 
ensures smooth handling of traffic spikes while optimizing 

resource usage and reducing costs during low-traffic periods.

Auto-Scaling Workflow:



About Coredge 

Noida Bangalore

Coredge is a leading provider of cloud-native and AI-driven solutions, 
leveraging a cutting-edge approach to deliver high-performing cloud 
infrastructure, Kubernetes, and hyper-converged technologies. With its Coredge 
Cloud Suite (CCS), the company enables businesses to build and scale multi-
cloud environments while simplifying management through automation and 
integration. Coredge supports organizations in developing cloud-native 
applications, modernizing legacy systems, and optimizing infrastructure 
performance. As a trusted partner to major telco, SMEs, & Government, Coredge 
drives digital transformation, helping businesses innovate and thrive in a rapidly 
evolving technological landscape. 

Office No. 2, 6th Floor,   
Tower-B, Embassy Galaxy Business 
Park, A-44 & 45, Sector 62, Noida,   
Uttar Pradesh 201309 

BHIVE Workspace,   
No. 467/468 Shri Krishna Temple 
Road, Indira Nagar 1st stage, 
Bengaluru, Karnataka - 560038  


